Category Archives: Cloud Computing

How do I migrate my skills to the cloud?

via GIPHY


Hi, I’m currently an IT professional and I’m training for AWS Solutions Architect – Associate exam. My question is how to gain some valuable hands-on experience without quitting my well-paying consulting gig I currently have which is not cloud based. I was thinking, perhaps I could do some cloud work part time after I get certified.

Join 38,000 others and follow Sean Hull on twitter @hullsean.


I work in the public sector and the IT contract prohibits the agency from engaging any cloud solutions until the current contract expires in 2019. But I can’t just sit there without using these new skills – I’ll lose it. And if I jump ship I’ll loose $$$ because I don’t have the cloud experience.


Hi George,

Here’s what I’d suggest:

1. Setup your AWS account

A. open aws account, secure with 2FA & create IAM roles

First things first, if you don’t already have one, go signup. Takes 5 minutes & a credit card.

From there be sure to enable two factor authentication. Then stop using your root account! Create a new IAM user with permissions to command line & API. Then use that to authenticate. You’ll be using the awscli python package.

Also: Is Amazon too big to fail?

2. Automatic deployments

B. plugin a github project
C. setup CI & deployment
D. get comfy with Ansible

Got a pet project on github? If not it’s time to start one. 🙂

You can also alternatively use Amazon’s own CodeCommit which is a drop-in replacement for github and works fine too. Get your code in there.

Next setup codedeploy so that you can deploy that application to your EC2 instance with one command.

But you’re not done yet. Now automate the spinup of the EC2 instance itself with Ansible. If you’re comfortable with shell scripts, or other operational tools, the learning curve should be pretty easy for you.

Read: Is AWS too complex for small dev teams? The growing demand for Cloud SRE

3. Clusters

E. play around with kubernetes or docker swarm

Both of these technologies allow you to spinup & control a fleet of containers that are running on a fixed set of EC2 instances. You may also use Amazon ECS which is a similar type of offering.

Related: How to deploy on EC2 with Vagrant

4. Version your infrastructure

F. use terraform or cloudformation to manage your aws objects
G. put your terraform code into version control
H. test rollback & roll foward infrastructure changes

Amazon provides CloudFormation as it’s foundational templating system. You can use JSON or YAML. Basically you can describe every object in your account, from IAM users, to VPCs, RDS instances to EC2, lambda code & on & on all inside of a template file written in JSON.

Terraform is a sort of cloud-agnostic version of the same thing. It’s also more feature rich & has got a huge following. All reasons to consider it.

Once you’ve got all your objects in templates, you can checkin these files into your git or CodeCommit repository. Then updating infrastructure is like updating any other pieces of code. Now you’re self-documenting, and you can roll-forward & backward if you make a mistake!

Related: How I use terraform & composer to automate wordpress on AWS

5. Learn serverless

I. get familiar with lambda & use serverless framework

Building applications & deploying only code is the newest paradigm shift happening in cloud computing. On Amazon you have Lambda, on Google you have Cloud Functions.

Related: 30 questions to ask a serverless fanboy

6. Bonus: database skills

J. Learn RDS – MySQL, Postgres, Aurora, Oracle, SQLServer etc

For a bonus page on your resume, dig into Amazon Relational Database Service or RDS. The platform supports various databases, so try out the ones you know already first. You’ll find that there are a few surprises. I wrote Is upgrading RDS like a sh*t storm that will not end?. That was after a very frustrating weekend upgrading a customers production RDS instance. 🙂

Related: Is Amazon about to disrupt your data warehouse?

7. Bonus: Data warehousing

K. Redshift, Spectrum, Glue, Quicksight etc

If you’re interested in the data side of the house, there is a *LOT* happening at AWS. From their spectrum technology which allows you to keep most of your data in S3 and still query it, to Glue which provides an ETL as a service offering.

You can also use a world-class columnar storage database called Redshift. This is purpose built for reporting & batch jobs. It’s not going to meet your transactional web-backend needs, but it will bring up those Tableau reports blazingly fast!

Related: Is Amazon about to disrupt your data warehouse?

8. Now go find that cloud deployment job!


With the above under your belt there’s plenty of work for you. There is tons of demand right now for this stuff.

Did you do learn all that? You’ve now got very very in-demand skills. The recruiters will be chomping at the bit. Update those buzzwords (I mean keywords). This will help match you with folks looking for someone just like you!

Related: Why I don’t work with recruiters

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

What’s the *real* way to deploy on Google Cloud?

via GIPHY

I was talking to a customer recently and they asked about deployments. They wanted to do things the real way. Here’s a snippet…

I’m helping out a company called Blue Marble and they are getting ready to deploy a new POS system. The app has been built using a Node.js back-end and Google Cloud Datastore for storage. The current dev build is hosted on AWS and connects to Google for the data bits.

Join 38,000 others and follow Sean Hull on twitter @hullsean.


For prod launch, they are interested in migrating to the “real” way of deployment on Google for everything.

They are pressed on time and looking for someone who can jump in quickly. Are you available? Do you have Google Cloud expertise?

Here’s what I said.

Cultural hurdles


Yep, I’ve have used Bigquery & GCE.

What are they looking for specifically? Full deployment automation? Multiple deploys per day?

I’ve found that sometimes the biggest hurdle to fully automated deploys can be cultural issues.

In other words yes you can automate your deployment so it is push button, get all the artifacts & moving parts automated. Then deploy without much intervention. But to go from that to the team having *faith* in the system, that is a challenge.

Also: Why would I help a customer that’s not paying?

Unit testing


Once the process has been streamlined, a lot often still needs to happen around unit & smoke tests.

If the team isn’t already in the habit of building tests for each bit of code, this may take some time. Also building tests can be an art in itself. What are the edge cases? What values are out of bounds?

Consider for example odd vulnerabilities that show up when hackers type SQL code into fields that devs were expecting. Sanity checking anyone?

Read: Is AWS too complex for small dev teams? The growing demand for Cloud SRE

Integraton testing

What makes this all even more complicated is integration testing. Today many application use various third party APIs, service-based authentication, and even web-based databases like Firebase. So these things can complicate testing.

Related: How to build an operational datastore on Amazon Redshift with S3

Getting there

Although your project, startup or business may be pressed for time, that may not change the realities of development. Your team has to become culturally ready to be completely agile. Many teams choose a middle ground of automating much of the deployment process, but still having a person in the loop just in case.

Same with testing. Sure automating can make you more agile & more efficient. But you’ll never automate out creative thinking, problem solving & ownership of the product.

Related: Why did Flatiron School fail?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

What does the fight between palantir & nypd mean for your data?

via GIPHY

In a recent buzzfeed piece, NYPD goes to the mat with Palantir over their data. It seems the NYPD has recently gotten cold feet.

Join 35,000 others and follow Sean Hull on twitter @hullsean.

As they explored options, they found an alternative that might save them a boatload of money. They considered switching to an IBM alternative called Cobalt.

And I mean this is Silicon Valley, what could go wrong?

Related: Will SQL just die already?

Who owns your data?

In the case of Palantir, they claim to be an open system. And of course this is good marketing. Essential in fact to get the contract. Promise that it’s easy to switch. Don’t dig too deep into the technical details there. According to the article, Palantir spokeperson claims:

“Palantir is an open platform. As with all our customers, their data & analysis are available to them at all times in an open & nonproprietary format.”

And that does appear to be true. What appears to be troubling NYPD isn’t that they can’t get the analysis, for that’s available to them in perpetuity. Within the Palantir system. But getting access to how the analysis is done, well now that’s the secret sauce. Palantir of course is not going to let go of that.

And that’s the devil in the details when you want to switch to a competing service.

Also: Top serverless interview questions for hiring aws lambda experts

Who owns the algorithms?

Although the NYPD can get their data into & out of the Palantir system easily, that’s just referring to the raw data. That’s the data they ingested in the first place, arrest records, license plate reads, parking tickets, stuff like that.

“This notion of how portable your data is when you engage in a contract with a platform is really, really complex, and hasn’t really been tested” – Tal Klein

Palantir’s secret sauce, their intellectual property, is finding the needle in the haystack. What pieces of data are relevant & how can I present the detectives the right information at the right time.

Analysis *is* the algorithms. It’s the big data 64 million dollar question. Or in this case $3.5 million per year, as the contract is reported to be worth!

Related: Which engineering roles are in greatest demand?

The nature of software as a service

The web is bringing us great platforms, like google & amazon cloud. It’s bringing a myriad of AI solutions to our fingertips. Palantir is providing a push button solution to those in need of insights like the NYPD.

The Cobalt solution that IBM is offering goes the other way. Build it yourself, manage it, and crucially control it. And that’s the difference.

It remains to be seen how the rush to migrate the universe of computing to Amazon’s own cloud will settle out. Right now their in a growth phase, so it’s all about lowering prices. But at some point their market muscle will mean they can go the Oracle route a la Larry Ellison. That’s why customers start feeling the squeeze.

If the NYPD example is any indication, it could get ugly!

Read: Can on-demand consulting save startups time & money?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

Do we have to manage ops in the cloud?

via GIPHY

One of the things that is exciting about the cloud is the reduced need for operations staff. There seem to be two drivers of this trend. One is devops, and all the automation that comes with it. As we formalize configurations, things become repeatable, and fewer people can manage greater armies of servers.

The second is by moving to a cloud hosting provider, we essentially outsource the operations to their team.

1. Pretty abstractions? still hardware buried somewhere

That’s right, beneath all the virtual EC2 instances & VPCs there is physical hardware. Huge datacenters sit in North Virginia, Oregon, Ireland, London and many other cities. Within them there are racks upon racks of servers. The hypervisor layer, the abstraction built on top of that, orchestrates everything.

Although we outsource the management of those datacenters to Amazon, there are still responsibilities we carry. Let’s dig into those more.

Also: Top serverless interview questions to ask an expert

2. Full-stack dev – demand for generalists?

These days we see the demand for a full stack developer. That is someone who does not only front end dev, but also backend. In turn, they are often asked to wear the had of ops. Spinup EC2 instance, decide on the capacity & size, choose proper disk I/O, place it within the right subnet & vpc & then configure the security groups properly.

All of these tasks would previously been managed by a dedicated ops team, but now those responsibilities are being put on developers shoulders. In some cases, such as with microservices, devs also carry the on-call duties of their applications.

Lastly there is likely ops to handle automation. Devops will formalize configurations, into ansible playbooks or chef recipes, so they can be checked into version control. At this point infrastructure can even be unit tested.

Read: Build an operational datastore on aws S3 with Spectrum

3. Design, resiliency, instrumentation, debugging

In previous eras, ops teams would be heavily involved with design of applications & architecture to support that. Now that may be handed to devs, but it still needs to happen.

Furthermore resiliency is said to be the customers responsibility. In the pre-cloud days, hardware was more reliable. It had a slower failure rate. With virtual machines, they’re expected to fail, and all the components to make your applications resilient are given to you. But it’s your job to architect them together.

That means your applications need to be self-healing. Failures need to be detected, taken out of autoscaling groups, and replaced. All automatically. Code or not, that is certainly operations.

Check this: Which engineering roles are in top demand?

4. It’s amazon’s fault we’re down!

I’ve seen quite a few outages in the past year, from Dropbox to Airbnb, and DYN themselves. Ultimately these outages could be tied back to a failure with Amazon. But when your business customers are relying on your service, it is *YOUR* business that answers to it’s own SLA.

In the news we see many of these firms pointing the finger at Amazon, “hey it’s not our fault, our cloud provider went down!”. Ultimately your customers don’t care. They don’t want excuses. If using multiple regions in AWS is not sufficient, you’ll need to build your application to be multi-cloud.

Also: 30 questions to ask a serverless fanboy

5. It’s hard to outsource your expertise

Remember, while you outsource your operations to Amazon, you’re getting very professional management of those systems. However they will optimize for their many customers. Your particular problems are less of a concern.

Read this: What can startups learn from the DYN DNS outage?

6. Only you can thinking holistically about interdependancies

Your application more than likely uses a number of APIs to capture data, perhaps do single sign on or even a third party database like Firebase. It’s your responsibility to do integration testing. All that becomes more complex in the cloud.

Also: How to lock down systems from outgoing employees

7. How do services complicate things?

SaaS solutions are everywhere now. auth0, firebase and an infinite variety of third party apis complicate reliability, security, storage, performance, integration testing & debugging?

Security is a traditional responsibility held by the operations hat. Much of that becomes more complex in the cloud. With serverless applications for example you may use a few APIs, plus an authentication broker, and a backend database. As this list of services grows, the code you write may decrease. But testing & securing it all becomes much more complex.

With more services like this, the attack vector or surface area becomes greater. Each of those services, can and will have bugs. What if a zero day is found in the authentication broker, allowing a hacker to break into a broad cross section of applications across the internet? How do you discover this? What if your vendor hasn’t found out yet?

Read: Is Amazon cloud too complex for small dev teams?

8. How does co-tenancy impact performance tuning?

Back to point #1 above, all these virtual servers sit on real physical servers. That affects customers in two ways. One you may be sharing the same host. That is if you use a very small vm, it may sit along side another customer with a small vm. If those eat up CPU cycles or network on that box, neighbors or co-tenants will suffer.

There are many other instance types where you get your own dedicated hardware. With those you have your own nic as well, so no competition. Except wait there’s network storage! That’s right all the machines in the AWS environment use EBS now, which is all co-tenant. So your data is sitting alongside other customers, and you are all fighting for usage of the same disk read heads.

One way to mitigate this is to configure specific provisioned IOPS for your servers. But that costs more. It’s normally reserved for database instances where disk I/O is really crucial.

Granted the NewRelics of the world will certainly help us with this process. But they’re not giving us a hypervisor or global view of those servers, network or storage. So we can’t see how the overall systems performance may be impacted.

Related: Is AWS a patient that needs constant medication?

9. Operations can be invisible

When security is done well, you don’t have breakins, you don’t have data stolen, everything just runs smoothly. Operations is like that too. When it is done well it can be invisible.

It can also be invisible in a different way. When you deploy your application on serverless, all the servers & autoscaling is completely abstracted away. So when you get some weird outage because the farm of servers is offline, or because you hit some account limit in the number of functions you can run at once, then it quickly comes into focus.

Beware of invisible operations, because it’s harder to see what to monitor, and know how to stay ahead of outages.

Read: Is amazon too big to fail?

10. We can’t oursource true ownership

At the end of the day you can’t outsource ownership of your application or your business. The holistic view of your application in totality can only be understood by your engineers.

And that in the end is what operations is all about, no matter who’s wearing the hat!

Also: 5 reasons to move data to amazon redshift

Get my monthly newsletter for more thoughts on data, startups & innovation. Scalability. Automation. Amazon cloud.

Is Amazon about to disrupt your data warehouse?

via GIPHY

Amazon is about to launch a product called glue. As you can see below, this is the last piece in the data warehousing puzzle. With that in place, Amazon will own you! Or at least have push button products to meet all of enterprises varying needs.

Even if you’re a small startup, you can do big-shot big enterprise data warehousing. That means everyone can use cutting edge data driven techniques for product & business decisions.

Join 33,000 others and follow Sean Hull on twitter @hullsean.

What is Redshift

Redshift is like the OLAP databases of years past, the Oracle’s of the world purpose built for warehousing data. Obviously without the crazy licensing model Oracle was famous for. With Amazon you can get enterprise class data warehouse for modest hourly prices.

If my recent conversations with recruiters about Redshift demand are any indication, there’s been a sudden uptick in startups looking for redshift expertise.

Also: Top serverless interview questions for hiring aws lambda experts

What is Spectrum?

Spectrum is a very new extension of Redshift allowing you to access & query S3 file data directly. This means you can have petabytes of data that you can access pre-load time. So you will ETL and load portions of it, but with Spectrum you can still access the offline data too.

In the old Oracle days this was called an EXTERNAL TABLE. I mention this only to say that Amazon isn’t doing anything that hasn’t been done before. Rather they’re bringing these advanced features within reach of everyday startups. That’s cool.

Related: Which engineering roles are in greatest demand?

What is glue?

Glue is still in beta, but if the RE:Invent talk above is any indication, it’s set to disrupt an entire industry. Wow!

Glue first catalogs your data sources. What does this mean, it scans them & models their schemas.

It then generates sample python ETL code. Modify it, or write your own. Share your code on Git. Or borrow other open source pieces, that already address your specific ETL use case!

Lastly it includes a job scheduler which handles dependencies. Job A must be completed before B can run and so forth. Error handling & logging are also all included.

Since these are native Amazon services, of course they’re going to integrate with their dangerously fast Redshift warehouse.

Read: Can on-demand consulting save startups time & money?

What is serverless?

I’ve written about how to throw fastballs at a serverless fanboy and even how to hire a serverless expert. But really what is it?

Serverless means deploying functions directly into the cloud. No servers, no configuration. All the systems administration & automation is hidden. No more devops to argue with! Amazon’s own offering is called Lambda.

Also: 30 questions to ask a serverless fanboy

What is Quicksight?

Amazon’s even jumped into the fray at the presentation layer. Quicksight is a BI tool along the lines of mode, domo, looker or Tableau.

Now it’s possible to stay completely within the cozy Amazon ecosystem even for business insight and analytics.

Also: What can startups learn from the DYN DNS outage?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

30 questions to ask a serverless fanboy

Everyone is hot under the collar again. So-called serverless or no-ops services are popping up everywhere allowing you to deploy “just code” into the cloud. Not only won’t you have to login to a server, you won’t even have to know they’re there.

As your code is called, but cloud events such a file upload, or hitting an http endpoint, your code runs. Behind the scene through the magic of containers & autoscaling, Amazon & others are able to provision in milliseconds.

Join 32,000 others and follow Sean Hull on twitter @hullsean.

Pretty cool. Yes even as it outsources the operations role to invisible teams behind Amazon Lambda, Google Cloud Functions or Webtask it’s also making companies more agile, and allowing startup innovation to happen even faster.

Believe it or not I’m a fan too.

That said I thought it would be fun to poke a hole in the bubble, and throw some criticisms at the technology. I mean going serverless today is still bleeding edge, and everyone isn’t cut out to be a pioneer!

With that, here’s 30 questions to throw on the serverless fanboys (and ladies!)…

1. Security

o Are you comfortable removing the barrier around your database?
o With more services, there is more surface area. How do you prevent malicious code?
o How do you know your vendor is doing security right?
o How transparent is your vendor about vulnerabilities?

Also: Myth of five nines – Why high availability is overrated

2. Testing

o How do you do integration testing with multiple vendor service components?
o How do you test your API Gateway configurations?
o Is there a way to version control changes to API Gateway configs?
o Can Terraform or CloudFormation help with this?
o How do you do load testing with a third party db backend?
o Are your QA tests hitting the prod backend db?
o Can you easily create & destroy test dbs?

Related: 5 ways to move data to amazon redshift

3. Management

o How do you do zero downtime deployments with Lambda?
o Is there a way to deploy functions in groups, all at once?
o How do you manage vendor lock-in at the monitoring & tools level but also code & services?
o How do you mitigate your vendors maintenance? Downtime? Upgrades?
o How do you plan for move to alternate vendor? Database import & export may not be ideal, plus code & infrastructure would need to be duplicated.
o How do you manage a third party service for authentication? What are the pros & cons there?
o What are the pros & cons of using a service-based backend database?
o How do you manage redundancy of code when every client needs to talk to backend db?

Read: Why were dev & ops siloed job roles?

4. Monitoring & debugging

o How do you build a third-party monitoring tool? Where are the APIs?
o When you’re down, is it your app or a system-wide problem?
o Where is the New Relic for Lambda?
o How do you degrade gracefully when using multiple vendors?
o How do you monitor execution duration so your function doesn’t fail unexpectedly?
o How do you monitor your account wide limits so dev deploy doesn’t take down production?

Also: Are SQL databases dead?

5. Performance

o How do you handle startup latency?
o How do you optimize code for mobile?
o Does battery life preclude a large codebase on client?
o How do you do caching on server when each invocation resets everything?
o How do you do database connection pooling?

Also: Is Amazon too big to fail?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

Some irresistible reading for March – outages, code, databases, legacy & hiring

via GIPHY

I decided this week to write a different type of blog post. Because some of my favorite newsletters are lists of articles on topics of the day.

Join 32,000 others and follow Sean Hull on twitter @hullsean.

Here’s what I’m reading right now.

1. On Outages

While everyone is scrambling to figure out why part of the internet went down … wait is S3 is part of the internet, really? While I’m figuring out if it is a service of Amazon, or if Amazon is so big that Amazon *is* the internet now…

Let’s look at s3 architectural flaws in depth.

Meanwhile Gitlab had an outage too in which they *gasp* lost data. Seriously? An outage is one thing, losing data though. Hmmm…

And this article is brilliant on so many levels. No least because Matthew knows that “post truth” is a trending topic now, and uses it his title. So here we go, AWS Service status truth in a post truth world. Wow!

And meanwhile the Atlantic tries to track down where exactly are those Amazon datacenters?

Also: Is Amazon too big to fail?

2. On Code

Project wise I’m fiddling around with a few fun things.

Take a look at Guy Geerling’s Ansible on a Mac playbooks. Nice!

And meanwhile a very nice deep dive on Amazon Lambda serverless best practices.

Brandur Leach explains how to build awesome APIs aka ones that are robust & idempotent

Meanwhile Frans Rosen explains how to 0wn slack. And no you don’t want this. 🙂

Related: 5 surprising features in Amazon’s serverless Lambda offering

3. On Hiring & Talent

Are you a rock star dev or a digital nomad? Take a look at the 12 best international cities to live in for software devs.

And if you’re wondering who’s hiring? Well just about everyone!

Devs are you blogging? You should be.

Looking to learn or teach… check out codementor.

Also: why did dev & ops used to be separate job roles?

4. On Legacy Systems

I loved Drew Bell’s story of stumbling into home ownership, attempting to fix a doorbell, and falling down a familiar rabbit hole. With parallels to legacy software systems… aka any older then oh say five years?

Ian Bogost ruminates why nothing works anymore… and I don’t think an hour goes by where I don’t ask myself the same question!

Also: Are we fast approaching cloud-mageddon?

5. On Databases

If you grew up on the virtual world of the cloud, you may have never touched hardware besides your own laptop. Developing in this world may completely remove us from understanding those pesky underlying physical layers. Yes indeed folks containers do run in “virtual” machines, but those themselves are running on metal, somewhere down the stack.

With that let’s not forget that No, databases are not for containers… but a healthy reminder ain’t bad..

Meanwhile Larry’s mothership is sinking…(hint: Oracle) Does anybody really care? Now’s the time to revisit Mike Wilson’s classic The difference between god and Larry Ellison.

Read: Are SQL Databases Dead?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

As cloud expands, does legacy grow too?

I was recently reading Drew Bell’s post Legacy systems are everywhere. It struck a deep chord for me.

Join 32,000 others and follow Sean Hull on twitter @hullsean.

Drew first touches on a story of upgrading an application with legacy components, taking pieces offline, and rebuilding to eliminate technical debt.

He then tells a parallel story of renovations in his new home. Well new for him, but an old building, with old building problems.

I’ve gone through some similar experiences so I thought I’d share some of those.

o A publishing company on AWS

I worked with one company in publishing. They had built a complex automation pipeline to deploy code. As a lead engineer planned to exit, I was brought in to provide support during transition. As with large complex websites, there was a lot that was done right, and some things done in old ways. Documenting all the pieces and digging up the dead bodies was a big part of the job.

Also: Is a dangerous anti-ops movement gaining momentum?

o Renovating a kitchen

In parallel to the above project, I was renovating my kitchen, in a new home in Brooklyn. Taking on this project myself, I dutifully assembled IKEA cabinents, and laid them out to spec. As I began the painstaking process of leveling for the countertop, I ran into trouble. Measurement after measurement didn’t add up. It seemed one section was shorter than another, where the counter should go.

Since I needed to add support for a dishwasher, that had to be measured correctly. Yet the level tool told a different story than the yardstick. Finally after thinking about it for a few hours, I put the level on the floor itself. Turns out the floor wasn’t level! That explained why cabinets were shorter in one area than another.

Also: How do we lock down systems from disgruntled engineers?

o Legacy in 5-7 years?

Complex systems like software, exhibit a lot of the same surprises as old buildings. That was one surprise I wasn’t expecting. As houses are renovated on the 15-30 year timeframe, software seems to experience a five to seven year cycle.

Whether a consequence of shifting sands in the underlying stack, databases, frameworks or cloud components, or the changing needs of product & customers

Also: Is AWS a patient that needs constant medication?

o Opportunity everywhere

As companies large & small migrate pieces of their systems to the cloud, move to microservices or rebuild on serverless, the opportunities are endless. It seems every firm is renovating their kitchen these days, putting on a new roof or upgrading their data pipeline.

Also: Is AWS too big to fail?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

What products & improvements are new on AWS?

Amazon is releasing new products & services to it’s global cloud compute network at a rate that has all of our heads spinning.

Join 32,000 others and follow Sean Hull on twitter @hullsean.

Here’s new stuff worth mentioning around databases & data.

1. For ETL – AWS GLUE

Moving data from your transactional MySQL or Arora database to your reporting database isn’t always easy.

In the past you could use a service like xplenty or Alooma.

Now Amazon themselves are getting into the ETL game, providing a new service called Glue.

Also: RDS or Mysql? 10 use cases

2. Query S3 with Athena

Chances are if you’re using AWS for anything, you’ve got data in S3. And wouldn’t it be nice to pick that apart and dig through it, where it sits?

Oracle had a feature called “external tables” and MySQL had something similar. Now Amazon is offering that native within it’s own cloud universe. Thanks to some tricky lambda code, now you can do that. Don’t worry how they did it, because it’s been packaged into a nice easy service for your use!

Related: When you have to take the fall – consulting war stories

3. Business Intelligence with QuickSight

If you’re a data driven startup, and who isn’t these days, you’re going to have a business unit building reports. Tableau or Looker may be in your wheelhouse.

Amazon is obviously seeing the opportunity here, and competing with their own partners. Check out Amazon Quicksight for details.

Read: Is upgrading RDS like a sh*t storm that will not end?

4. Expanded RDS

RDS is obviously a very popular offering. And even though zero downtime is very hard to achieve with RDS, you’ll save plenty on DBAs and admins you don’t have to hire!

If you hadn’t heard, there is now MariaDB support. And with it, there’s a migration from MySQL to Mariadb as well.

Using Mariadb may bring you performance advantages & improvements. But RDS may mitigate this by productize & standarizing things.

You can also now move encrypted snapshots across regions. In my view this isn’t really a new feature, but rather fixing something that was broken before. The previous limitation was really more a symptom of their global network of data centers, than any built feature per se.

Also: Is the difference between dev & ops a four-letter word?

5. Expanded Redshift

As I’ve blogged before, everybody is excited about Redshift these days.

Amazon has introduced some new features.

o better loading of sorted data

This is done behind the scenes to load data quickly, and keep it stored efficiently. No more vacuuming after a big load!

o user & database rate limiting

Limit connections on a per user or per database level. Useful!

o storage estimates on analyze

When you perform the analyze command, you can get storage information so it’s easier to decide datatypes & compression type. Nifty!

Also: Is Redshift outpacing Hadoop as the big data warehouse for startups?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters

How can startups learn from the Dyn DNS outage?

storm coming

As most have heard by now, last Friday saw a serious DDOS attack against one of the major US DNS providers, Dyn.

Join 32,000 others and follow Sean Hull on twitter @hullsean.

DNS being such a critical dependency, this affected many businesses across the board. We’re talking twitter, etsy, github, Airbnb & Reddit to name just a few. In fact Amazon Web Services itself was severely affected. And with so many companies hosting on the Amazon cloud, it’s no wonder this took down so much of the internet.

1. What happened?

According to Brian Krebs, a Mirai botnet was responsible for the attack. What’s even scarier, those requests originated for IOT devices. You know, baby monitors, webcams & DVRs. You’ve secured those right? 🙂

Brian has posted a list of IOT device makers that have backdoors & default passwords and are involved. Interesting indeed.

Also: Is a dangerous anti-ops movement gaining momentum?

2. What can be done?

Companies like Dyn & Cloudflare among others spend plenty of energy & engineering resources studying attacks like this one, and figuring out how to reduce risk exposure.

But what about your startup in particular? How can we learn from these types of outages? There are a number of ways that I outline below.

Also: How do we lock down systems from disgruntled engineers?

3. What are your dependencies?

After an outage like the Dyn one, it’s an opportunity to survey your systems. Take stock of what technologies, software & services you rely on. This is something your ops team can & likely wants to do.

What components does your stack rely on? Which versions are hardest to upgrade? What hardware or services do you rely on? Which APIs do you call out to? Which steps or processes are still manual?

Related: The myth of five nines

4. Put your eggs in many baskets

Awareness around your dependencies, helps you see where you may need to build in redundancy. Can you setup a second cloud provider for DR? Can you use an alternate API to get data, when your primary is out? For which dependencies are your hands tied? Where are your weaknesses?

Read: Is AWS too complex for small dev teams?

5. Don’t assume five nines

The gold standard in technology & startup land has been 5 nines availability. This is the SLA we’re expected to shoot for. I’ve argued before (see: myth of five nines) that it’s rarely ever achieved. Outages like this one, bringing hours long downtime, kill hour 5 nines promise for years. That’s because 5 nines means only 5 ½ minutes downtime per year!

Better to be realistic that outages can & will happen, manage & mitigate, and be realistic with your team & your customers.

Also: Is AWS a patient that needs constant medication?

Get more. Grab our exclusive monthly Scalable Startups. We share tips and special content. Our latest Why I don’t work with recruiters